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Abstract. We investigate, through statistical mechanics techniques. the problem of finding N- 
tuples J = ( J I ,  h . .  . . , JN) wilh a fixed fraction x of non-vanishing entries that solve 3 set of 
P = aN iinem equations. In particular, we determine the reginn in the plane (a, E )  where these 
solutions exist with a probability of 1 in lhe limit of large N .  We also obtain at insight into the 
microscopic srmcture of these solutions by calculating the distribution of the probability of an 
arbitmy non-vanishing enVy J, .  Moreover we evaluate malytically the performances of several 
easy-to-implement heuristic algorithms and compare them with the optimal solution. a task that 
1s suited very well to the statisticnl mechanics approach. 

1. Introduction 

Statistical mechanics techniques developed in the study of disordered systems, namely 
the replica method, have been employed successfully in the analysis of combinatorial 
optimization problems (MCzard et al 1987). The main goal of these studies is to estimate 
the typical value of the cost of the minimal-cost (optimal) solutions. This typical value 
is obtained by averaging over the minimal-cost solutions of an ensemble of realizations 
or instances of the optimization problem. As the cost is an extensive and therefore self- 
averaging quantity one expects its mean value to coincide with its most probable (typical) 
value when the size of the system becomes very large (Binder and Young 1986). Thus, 
in the thermodynamic limit the cost den& converges to a unique value, independently of 
the instance of the optimization problem. In this sense we say that the cost density of any 
randomly chosen instance is given by the average cost density with probability 1 in the 
thermodynamic limit. This is a direct consequence of the property of self-averageness of 
the free-energy (or cost) which, in spite of being well established numerically, has not yet 
been proven rigorously (MLzard et a[ 1987). It should be emphasized, however, that the 
procedure of averaging over instances is highly desirable when the goal is to compare the 
performance of heuristic algorithms in the search for optimal or near-optimal solutions of a 
particular combinatorial optimization problem. 

In this paper we consider the problem of finding the minimum weight solution to a set 
of linear equations: given the set of P pairs (S', t ' )  I = 1, . . . , P where S' = (Si, . . . , Sh), 
find the N-tuple J = (JI, , . . , JN) that solves the P linear equations 
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and possesses the minimal number of non-zero entries. This problem belongs to the NP- 
complete class which basically means that the computational cost of any known deterministic 
algorithm for finding the optimal solution grows exponentially with the number of variables 
N (Garey and Johnson 1979). More specifically, we assume that the entries Sl and f' 
are Gaussian, statistically independent, random variables with a mean of zero and unit 
variance. The statistical independence of these random variables and the thermodynamic 
limit N -+ 00 are the main simplifying assumptions that make the problem amenable to 
analytical study. The practical motivation for studying these rather far-fetched randomly 
generated sets of linear equations is for their widespread use in the empirical evaluation 
of heuristic algorithms. Moreover, although real-world sets of linear equations tend to be 
highly structured rather than random, we think that the solution of the random problem may 
be useful as it can be viewed as a zeroth-order approximation around which one should be 
able to expand to find solutions for more realistic problems. 

To tackle this problem using statistical mechanics techniques we fix the fraction of non- 
zero entries of J to a constant value K E [O, 11 and proceed to minimize the energy or cost 
function 
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where Jj = ci Wj with ci = 0, I .  The binary variables ci satisfy the constraint 

which guarantees that the fraction of non-zero entries of J is K. The goal is then, for fixed 
values of P and K .  to determine the global minima (ground states) of the cost function- 
equation (2) .  The minimum-weight solution is determined by the minimal value of K for 
which there exists at least one global minimum with cost zero. In this paper we use the 
replica method not only to estimate the typical cost of the optimal solutions but also to 
obtain microscopic information about these solutions. This can be achieved by calculating 
the distribution of probability that a certain entry Wj of the optimal solution takes a value 
within the range [ W, W + dW]. We find, for instance, that there is a finite region around 
W = 0 where this probability vanishes. We illustrate the usefulness of the statistical 
mechanics approach as a tool for evaluating the performance of heuristic algorithms by 
calculating the minimal cost associated with three simple heuristic methods which attempt 
to minimize (2) subject to the constraint (3). The analysis presented in this paper is based on 
the statistical mechanics framework proposed by Gardner to study the configuration space 
of neural networks (Gardner 1988, Gardner and Derrida 1988). 

The remainder of the paper is organized as follows. The typical cost of the optimal 
solutions as well as the distribution of probability of their entries are calculated analytically 
in section 2. The evaluation and comparison of the performances of three heuristic 
algorithms for finding N-tuples J with K N non-zero entries which minimize E ,  is presented 
in section 3. Finally, in section 4 we summarize our results and discuss their relevance to 
the problem of learning on adiluted or damaged neural network composed of linear neurons. 

2. The optimal solution 

In order to obtain a well defined thermodynamic limit. N + 00, in the following we 
will assume that the number of equations is extensive, i.e. P = UN.  Within the standard 
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canonical formulation of statistic31 mechanics the appropriately normalized minimal cost is 
given by 

where f is the average free-energy density 

- pf = lim ({ Inz )) 
N-m N 

and Z is the partition function 

The notation (( ' .  .)) stands for the average over the Gaussian random variables Si and t i ,  
while 8fi is the Kronecker delta. The summation over all realizations of c that satisfy 
constraint (3), and the integration over all values of the real entries Wi, exhaust the 
configuration space of possible solutions. The limit ,!J + cc then ensures that only the 
configurations which minimize E,(W, c) will contribute to Z. Attention must be paid, 
however, when carrying out the integrals over W, so as to avoid unwanted divergences. In 
fact, we must impose two additional constraints, 

. M  

and 
l N  

N i  
Qo = - c(1 - ci) Wf 

in order to guarantee that all integrals are convergent. Clearly, our results must not be 
affected by the a priori choice of Qo as it is the squared norm of the subset of entries 
W, that do not contribute to the cost function--equation (2 ) .  The parameter Q ,  however, 
is germane to the thermodynamical analysis of the system: it should be chosen so as to 
minimize E,. In the case where there are several values of Q that minimize the cost. we 
will choose the smallest one, which then corresponds to the solution of minimal norm, or 
the so-called pseudo-inverse (Kohonen 1984). 

To carry out the quenched average in (5) we employ the replica method: using the 
identity 

we first evaluate {{ Z")) for integern and then continue analytically ton  = 0. Using standard 
techniques (Gardner 1988, Gardner and Derrida 1988) we obtain, in the thermodynamic limit 

QOQ; - Q&)+G(G,,~. in, Qo, Q : ) + ~ c ,  ( q u h )  
n-0 n 

(10) 
where 
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and 
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The extremum in (IO) is taken over all saddle-point parameters (:,,,&,, &, @, 9.b). The 
physical order parameter 

measura the overlap between two different solutions Jy and J b .  
To proceed further we make the replica-symmetric ansatz, i.e. we assume that the 

values of the saddle-point parameters are independent of their replica indices: quh = 9, 
&a = c j  Vu c b and similarly for &,& and 0:. Evaluation of (11) and (12) with this 
ansatz is straightforward, resulting in the following expression for the replica-symmetric 
average free-energy density: 

-pfm = 94 - QQ t QoQo - i ( 1  - K ) h  bo t ~ e ' t  ; I n T  - $LYlnil t @ ( Q  -9)l 

where Dz = dz/&exp(-z2/2) is the Gaussian measure. We have introduced the 
parameter E' = E - f In bo which allows for the total decoupling between Qo and the 
remaining saddle-point parameters which are relevant to the computation of E ~ .  The minimal 
cost (4) becomes 

The replica-symmetric saddle-point parameters (C', 4, Q, Qo, q) are obtained by extremizing 
&, which gives rise to a set of four coupled saddle-point equations since the equation for 
Qo does not involve the other parameters. In the case where B ( Q  - q )  = x is finite and 
Q is chosen so as to minimize fn, i.e. a.&/aQ = 0, the task of solving the saddle-point 
equations is extremely simplified resulting in the following expression for the squared norm 
of the optimal solution (7): 

where 
m 

A. = 2 l  Dzz' 

and is the unique solution of 
m 

K = 2 1  Dz 

It is clear then that a solution with finite x only exists for LY > A,. In this region the 
minimal cost reduces to 
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I Figure 1. The full CUM, a = A,, delimits the region 
where a solution with cost zero exists with probability 
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0.0 ’ 1 (above the curve). The broken CUNC, 01 = R. 

0.0 0.2 0.4 0.6 0.8 1.0 shown here for comparison, is lhe trivial guess for this 

I 

CI bounday. 

while for a < A. we find x + W. so that G~ = 0, in accordance with (15). In fact, the 
curve given by the equation a = A,, shown in figure 1, delimits the region in the space 
(a, K) where the minimal cost is non-zero. Thus, a minimum with cost zero exists with 
probability 1 in the thermodynamic limit provided that the condition a < A, is satisfied. 
As mentioned in the introduction, this result is a consequence of the self-averageness of the 
free-energy. Note that A, = 1 for K = 1, as expected. 

To investigate the regime ff < A, we follow the analysis of Fontanari (1993) for 
the limit K = 1 and study the solution of the saddle-point equations for Q fixed. This 
analysis indicates that there exists an infinity of values of Q consistent with cm = 0. More 
specifically, any Q z Qp where 

a P Q =- 
A, - f f  

yields cm = 0 in this regime. The choice Q = Qp corresponds to the pseudo-inverse 
solution (Kohonen 1984). 

To obtain some insight into the microscopic structure of the optimal solution, we look 
at the distribution of values its entries can take on. The density of probability that a non- 
vanishing entry Wi of the optimal solution assumes a value within the range [ W ,  W + d W ]  
is defined as (Bouten et al 1990) 

p(\v) = l h  (( @(WL - Lv))T )) 
8-m 

where (. . .)T stands for the thermal average. We note that P (  W )  is normalized to K. The 
averages are performed by using a standard replica trick to liR the denominator to the 
numerator (Bouten et a1 1990). Assuming replica symmetry yields 

To carry out the limit p + 00 explicitly we must consider separately the two regimes 
c1 < A, where Q = Qp = cl/(AK -a),  and a > A, where Q = &/(a -A, ) .  In the first 
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Figurc 2. Distribution of probability that an arbiuary 
non-vanishing entry W, takes a value within L e  m g e  
[W. W + dW] for K = 0.5 and cz = 0.1 (shon broken 
curve). a = 0.5 (long broken Curve) and a = 0.8 (full 
curve). Note that Ao.5 =0.93. 

Figre 3. Same as figurc 2 buf for cz = 1 .O (short 
broken curve), a = I .5 (lonp broken curve) and a = 3.0 
(full awe).  

case we find 

0 
(23) 

otherwise I Piit') = [ ~ ~ e x p [ - W z ~ x i ~ c - f f )  2'2 

while in the second case we find 

This distribution is depicted in figures 2 and 3 for K = 0.5 and several values of 01 

below and above A0.s = 0.93. Since the distribution is symmetric we only present it 
for positive entries. As 01 approaches A0.s the gap increases and the non-vanishing part of 
the distribution becomes more uniform. Branch and bound heuristics may benefit greatly 
from these results as they suggest that tree searches leading to values of I Wil smaller than 
the intrinsic thresholds given in (23) and (24) are unlikely to be fruitful. Moreover, this 
result motivates the proposal of a heuristic algorithm which consists of solving the system 
of linear equations without imposing any constraints on the entries and then deleting the 
(1 - K ) N  smallest entries. The performance of this algorithm will be considered in the next 
section. 

The condition for the local stability of the replica-symmetric saddle-point (de Almeida 
and Thouless 1978) is given by 

amyl < 1 (25) 

where yo and y~ are the transverse eigenvalues of the matrices of second derivatives of Go 
and GI with respect to &ob and qPh. respectively. Following the analysis of Gardner and 
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Derrida (1988) we find that condition (25) reduces to 
K 

ff 
- < I  if LY > A, (26) 

and 
LYK - < 1  if 01 < A ,  

2Ai 

which are always satisfied since A, > K (figure 1). We believe, then, that the results 
presented in this section are exact, since the replica-symmetric saddle-point is locally stable 
for all values of 01 and K .  The exactness of our results depends, of course, on the global 
stability of the replica-symmetric ansatz, a very difficult issue which we do not address in 
this paper. We mention, however, that the model we consider is a diluted version of the 
spherical model of a spin glass (Kosterlitz et a1 1976), whose rigorous solution coincides. 
with the replica-symmetric solution. 

3. Heuristic algorithms 

In this section we consider three easy-to-implement heuristic algorithms that generate N-  
tuples with KN non-vanishing entries and attempt to minimize the cost function Ex for CY 

and K fixed. 
In the first heuristic algorithm, termed quenchedcutting, we set to zero (I-K)N arbitrary 

entries Jt,  say i = 1 + K N ,  . . . , N ,  and choose the remaining ones so as to minimize the 
cost function 

Clearly, if K 3 CY this procedure is guaranteed to find a solution with cost zero. As pointed 
out by Bouten et a1 (1990) and Barbato and Fontanari (1993), the minimal normalized cost 
associated with (28) can be obtained by replacing LY by LY/K in (19) evaluated at K = I .  
This yields 

I K  

for 01 > K and cq = 0 otherwise. 

that minimizes the cost 
The second heuristic we consider, selective cutfing, consists of finding the N-tuple J 

without imposing any constraint on the number of vanishing entries. Once J is known 
one sets to zero all entries such that lJil < A where A is chosen so as to guarantee that the 
fraction of non-vanishing entries equals K. The performance of selective cutting is measured 
by its normalized cost defined as 
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where the thermal average (. . .)T is with the Boltzmann weights expl-pE,=,(J)]. Here 
O ( x )  = 1 if x z 0 and 0 otherwise, The relation between h and K can be obtained by 
calculating explicitly the fraction of entrics such that IJi] z A, i.e. 
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which yields 
m 

= 2 L , 2  (33) 

where el ,  the squared norm of the N-tuples that minimize the cost function E,=1, is 
obtained by setting K = 1 in (16) and (20). Since the choice of K determines the value of 
the threshold A, the tempting strategy of equating h to the intrinsic thresholds defined in 
(23) and (24), which are themselves also determined by K ,  cannot be used because it gives 
rise to an ambiguity in the value of K. The evaluation of the averages in (31) is rather 
involved but can easily be carried out following steps essentially identical to those used to 
calculate P ( W )  in section 2. The final result is 

t,< = - 1 - Ar (1 - n, + - a ! )  orcl 
2 I -a! 

(34) 

and 

where y = l / (a !  - I). In the limit of large a this last equation can be written as 

which shows that selective cutting has the same asymptotic behaviour as the optimal 
solution-equation( 19). 

Finally, we consider the third heuristic, random cutting, which, similarly to selective 
cutting, consists of modifying the N-tuple J that minimizes & = I .  Once J is known, 
(1 - K)N randomly chosen entries are set to zero so as to satisfy the condition that the 
solution must possess K N  non-vanishing entries. The performance of this heuristic algorithm 
is measured by the quantity 

where (. . .), stands for the average over the statistically independent random variabtes ci 
distributed according to 

p(Ci) = K8(Ci - 1) + (I - K)&(Cz). (38) 
As Ex=,  does not depend on c;, the average over these random variables can be readily 
performed resulting in the following expression: 

The evaluation of the quenched (( . . . )) and the thermal (. . .)T averages follows the same 
procedure mentioned before yielding 

(1 - K)* OIK(1  - K )  
f f < l  

+ 2(1 -a) 
E, = - 2 (40) 
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and 
1 K ( 1  - K )  K ( 2 - K )  

E - - +  - O1>l 
' - 2  2(or-1) 2ff 

The asymptotic behaviour of this cost is 

+ q f f - 3 )  

(41) 

which coincides with the behaviour of quenched cutting (29) for large CL. 

In figures 4(a) and ( b )  we show the normalized costs as predicted by the three heuristic 
algorithms presented above, together with the optimal solution, for K = 0.1. It is remarkable 
that in the regime ff < 1 (figure 4(a)) there exists a range of 01 where selective cutting 
outperforms quenched cutting, though the latter should always be preferred for 01 -= K .  This 
region increases as K decreases. Another rather unexpected result is the best performance of 
random cutting in comparison with selective cutting near 01 = I .  This seems to indicate that 
the small entries play a very important role on the stability of a system of linear equations in 
the saturation regime. In fact, we have also verified that deleting the (1 - K ) N  largest entries 
produces the lowest cost, near IY = 1, as compared with selective and random cutting. For 
ci z 1 (figure 4(b)) selective cutting outperforms quenched cutting for all a not too near 
CY = 1 and it actually approaches the optimal solution in the regime of large a. 

/ 
I I I 1 

I 
0.0 0.2 0.4 0.6 0.8 1.0 1.0 1.5 2D 2.5 3.0 

0 a 

Figure 4. ( a )  NorllLzized wst For x = 0.1 and a c I as predicted by the heuristic algorithms: 
random cuning (dotted curve). selective cutting (shorl broken curve) and quenched curring (long 
broken curve). The full CUNe is the optimal solution. (b)  Same as (a) but for a > 1. 

4. Conclusion 

We have shown the usefulness of the statistical mechanics approach for estimating the 
typical cost of the optimal solutions of a combinatorial optimization problem-the minimum- 
weight solution to linear equations. This approach is akin to the rather recent average- 
case complexity analysis (Traub and Wozniakowski 1994) which contxasts strongly with 
the more traditional worst-case analysis of computing theory. Actually, the usefulness of 
worst-case analysis for large problems is rather doubtful since the worst cases are very 
unlike to arise. For instance, worst-case analysis tells us that given K and CY the problem 
of determining whether there exists a solution to (1) is NP-complete (Carey and Johnson 
1979). Nevertheless, the statistical mechanics approach tells us that for 01 < A, (see 
figure 1) a solution exists with a probability that tends to 1 in the limit of very large systems. 
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Moreover, the statistical mechanics approach can also provide valuable information on the 
microscopic structure of the optimal solutions as illustrated by figures 2 and 3 where the 
density of probability of a non-vanishing entry Ji = W,, taking a value within the range 
[W, W + dW], is depicted. 

Any fair comparison between the performances of heuristic algorithms aimed at solving 
a particular optimization problem must necessarily involve averaging over a large number 
of instances of the problem. Thus the statistical mechanics approach is very well suited to 
this comparative task as shown in figures 4(a) and ( b )  where the minimal costs predicted by 
several heuristic algorithms are presented together with the optimal solution. It is interesting 
to note that the performance of a class of general purpose heuristic algorithms-genetic 
algorithms (Goldberg 1 9 8 9 p h a s  recently been analysed within the statistical mechanics 
framework (Priigel-Bennett and Shapiro 1994). though the optimization problem considered 
by those authors was much simpler than the one discussed in this paper. 

A point worth emphasizing is the equivalence between the problem of finding a solution 
J to a set of linear equations and the problem of learning (or memorizing) a random set 
of input/output pairs (SI, t ' )  in a linear perceptron of synaptic weights J (Fontanari 1993). 
In this sense, the results presented in this paper may also be viewed as a study of the 
effects of different types of lesion or dilution on such a neural network. On the one 
hand, the optimal solution and the quenched cutting are models for lesions that take place 
before the learning process, being then analogous to the annealed and quenched dilution, 
respectively, discussed by Bouten et al (1990) and Barbato and Fontanari (1993). On the 
other hand, both selective and random cutting attempt to model lesions that occur afrer the 
learning process. In particular, the comparison between the effects of the damage caused 
by selective and random cutting on the performance of the network is useful to single out 
the role of the strength of the synaptic weights: the results shown in figures 4(a) and 
(b)  suggest that small weights are important only when the network is near its saturation 
capacity ((U = I), otherwise their deletion causes less harm than the random elimination of 
weights. It should also be interesting to investigate the effects of these different types of 
lesions on the generalization capability of neural network. 
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